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Why measure uncertainty?

Experts agreement on the MSSEG dataset (Commowick et al. 2021).
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Challenges and Objectives
Current issues in Uncertainty Quantification (UQ)

UQ studies essentially restrict to voxel-level estimates.
Potential misalignment with the clinical interest, which can be at a higher level (e.g.

lesion, volume, or image level).

Long-term objective
Propose uncertainty estimates aligned with the clinical need.
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Lesion uncertainty: Proposed paradigm
Paradigm

Lesion-level uncertainty estimates should support the identification of incorrect findings
(false positive instances).

We propose to use pFP the probability that the lesion is a false positive, as lesion
uncertainty score.
In practice, an auxiliary classifier is used to estimate the pFP .
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Graph classification using a Graph Isomorphism Network (Wang et al. 2022)
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FC: Fully-connected layer. BN: Batch Normalization. ReLU: Rectified Linear Unit. Parameters: 26 700.
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(N = 100, 2 time points)
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Study summary: lesion uncertainty module
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Pixyl Analysis Reports
Pixyl.Neuro.MS
Longitudinal report

Patient Information
Name: Jane Doe | Sex: F | Born in: 1989 | ID: 2622
Visit Date: Oct 5, 2023, Prior Visit Date: Oct 6, 2022

Quality Control

Pass

Observations

- 

THIS AUTOMATED REPORT DOES NOT REPLACE MEDICAL EXPERTISE.
PLEASE REFER TO THE RADIOLOGY REPORT.

Disease Activity
T2 FLAIR lesions

New 7 Enlarging 2

Lesion Load

Volume(ml) Change(ml) Lesion count *

Periventricular 9.87 0.61 ≥ 1

Juxtacortical 2.27 0.47 ≥ 1

Infratentorial 0.25 -0.09 ≥ 1

Deep WM 0.95 0.1 ≥ 1

Whole Brain 13.34 1.09 ≥ 9 **

* The lesion count is based on the 2017 revision of the McDonald criteria.
** The Barkhof MRI criteria for MS diagnosis includes at least 9 lesions on T2-weighted images.

FLAIR Segmentation

New Enlarging Stable

Report automatically generated on Feb 12, 2024. Not approved for clinical use. Please visit the instructions for use https://pixyl.ai/7ab7f6ec1be9ca3e29108a0f587375d3 for more
information.

1/1 pixyl.ai
Pixyl.Neuro.MS v2.1.0 Pixyl SAS 5 av du Grand Sablon, 38700 La Tronche, France - contact@pixyl.ai UDI: (01)03770028144013(8012)v2.1.0

Pixyl.Neuro.BV
Longitudinal report

Patient Information
Name: John Smith | Sex: M | Born in: 1945 | ID: 2620
Visit Date: Jan 1, 2020, Prior Visit Date: Jan 1, 2015

Quality Control

Pass

Observations

- 

THIS AUTOMATED REPORT DOES NOT REPLACE MEDICAL EXPERTISE.
PLEASE REFER TO THE RADIOLOGY REPORT.

Brain T1 volumetry and comparison with normative population values
Prior visit Current visit

Volume(ml) Volume(ml) Change(%) Normal range(ml)

Brain 1167.37 1106.92 -5.18% 1113.29 - 1202.98

Supratentorial grey matter 541.59 517.07 -4.53% 504.91 - 572.4

Supratentorial white Matter 495.43 461.44 -6.86% 433.03 - 509.91

Cerebellum GM+WM 130.35 128.41 -1.49% 128.34 - 167.72

Left lateral ventricle 19.93 27.89 39.94% 13.02 - 32.26

Right lateral ventricle 19.96 27.87 39.63% 12.39 - 29.96

The normative distribution is calculated over 2700+ normal subjects. Volumes are normalized by the volume of the intracranial cavity when compared with the normative
population of the same age. The curves displayed correspond to the 5th, 25th, 50th, 75th and 95th percentile for healthy subjects.

Report automatically generated on Feb 12, 2024. Not approved for clinical use. Please visit the instructions for use https://pixyl.ai/7ab7f6ec1be9ca3e29108a0f587375d3 for more
information.

1/2 pixyl.ai
Pixyl.Neuro.BV v2.1.0 Pixyl SAS 5 av du Grand Sablon, 38700 La Tronche, France - contact@pixyl.ai UDI: (01)03770028144013(8012)v2.1.0
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Predictive Intervals in segmentation-based volumetry

Definition
X ∈ RN−1 are estimates of the true volumes Y ∈ RN−1, obtained from the segmentation.
A predictive interval Γα(X ) is a range of values intended to encompass Y with a specified
degree of confidence 1 − α (e.g. 90%, 95%), so that P(Y ∈ Γα(X )) ≥ 1 − α

Sampling-based approaches
Sample a set of estimated volumes
X1, ...,XK for the given image.
Estimate the mean µ(X ) and standard
deviation σ(X ).
Assuming Y |X ∼ N (µ(X ), σ(X )):

Γα(X ) = [µ(X )−zσ(X ), µ(X )+zσ(X )] (1)
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A predictive interval Γα(X ) is a range of values intended to encompass Y with a specified
degree of confidence 1 − α (e.g. 90%, 95%), so that P(Y ∈ Γα(X )) ≥ 1 − α

Sampling-based approaches
Sample a set of estimated volumes
X1, ...,XK for the given image.
Estimate the mean µ(X ) and standard
deviation σ(X ).
Assuming Y |X ∼ N (µ(X ), σ(X )):
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Limitations
Inference time, due to the sampling
procedure.
The normality assumption, which may
not always hold.
Lack of flexibility, as intervals are
symmetrical by design.
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Direct approaches
Directly estimate the quantiles t̂α/2(X )
and t̂1−α/2(X ).
The PI is computed as:

Γα(X ) = [t̂α/2(X ), t̂1−α/2(X )] (2)
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Fast Predictive Intervals using a multi-head segmentation model: TriadNet
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Training TriadNet through Tversky loss parametrization

The Soft Dice loss (Milletari et al. 2016)

L ≈ 1 − TP

TP + 0.5FP + 0.5FN
(3)

TP: True Positive, FP: False Positive, FN: False Negative

The Tversky loss (Salehi et al. 2017)

Tγ,β ≈ 1 − TP

TP + γFP + βFN
(4)

Definition
Writing plower , pmean and pupper the 3 output heads of the TriadNet:

TriadLoss = T0.8,0.2(plower,y ) + T0.5,0.5(pmean,y ) + T0.2,0.8(pupper,y ) (5)
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Visualization of the bounds predicted by TriadNet

Lower 
contour

Mean 
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Upper 
contour
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Conformal calibration of Predictive Intervals

Algorithm Pseudocode for Predictive Intervals calibration (Angelopoulos et al. 2023)
Input: Trained TriadNet model
Input: Calibration dataset with N pairs of image and ground truth segmentation
Input: User-defined coverage level (1 − α)%
Output: Corrective factor q̂ to calibrated PIs at the (1 − α)% level
1: for j = 1 to N do
2: Estimate the volume Xj , lower bound volume L(Xj), upper bound volume U(Xj) using

TriadNet.
3: Compute score function: sj(X ,Y ) = max{L(Xj)− Y ,Y − U(Xj)}
4: end for
5: Compute corrective factor q̂ = Quantile(s1, s2, ..., sN ;

⌈(N+1)(1−α)⌉
N )

Calibrated PIs at test time
Γα(Xtest) = [L(Xtest)−q̂,U(Xtest)+q̂]
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Application 1: lesion load estimation in Multiple Sclerosis patients
120 subjects for training, 40 for calibration and 50 for in-distribution testing.
(Multicentric - 3 Tesla: MSSEG 2016 / WMH 2017 / ISBI 2015)
Intervals calibrated for a target coverage of 90%.
Metrics (bootstrapping, M = 15000):

• Mean Average Error: 3.08 ± 0.46 mL
• Empirical Coverage: 92.06 ± 5.34%
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Application 2: tumor volume estimation in glioblastoma patients
Pathology Description

Prevalent form of brain tumor, associated with poor prognosis (Grech et al. 2020).
Estimation of the tumor volume is crucial for treatment planning.
Quantification of the tumor can be performed through a 3-classes segmentation: necrosis,
edema, gadolinium-enhancing tumor.

T1 T1 injected T2 FLAIR Ground truth
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Application 2: tumor volume estimation in glioblastoma patients

679 subjects for training, 227 for calibration, and 227 for testing
(BraTS 2023 dataset)
Intervals calibrated for a target coverage of 90%.

Necrosis:
MAE: 3.10 ± 0.46mL
Coverage: 90.78 ± 2.71%

Edema:
MAE: 8.22 ± 0.57mL
Coverage: 90.76 ± 2.70%

Enhancing tumor:
MAE: 1.73 ± 0.19mL
Coverage: 90.79 ± 2.71%
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Study summary - Predictive Intervals
We propose a direct approach for PI estimation based on a multi-head segmentation
model, TriadNet†.

We leverage the Conformal framework to calibrate intervals.
Intervals are fast to compute (≤ 1s), as no sampling is required.

TriadNet

74 mL 8068

30 mL 3525

7.5 mL 105

+ 

Input sequences Segmentation Predictive Intervals  

Necrosis

Edema

Enhancing

†B. Lambert et al. (2023b). “TriadNet: Sampling-Free Predictive Intervals for Lesional Volume in 3D Brain MR Images”. In: UNSURE 2023,
Held in Conjunction with MICCAI 2023. LNCS 14291, pp. 32–41 34 / 53
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Objective - Automatic Quality Control
Paradigm

The number of automatic analyses at Pixyl is steadily increasing.
A fraction of the input images does not meet the defined quality criteria.

An automatic Quality Control (QC) tool is desired to flag non-conform input images.

Number of daily analyses at Pixyl.
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What makes a medical image out-of-distribution?

Train samples

ID samples

Moderate OOD 

Strong OOD 

Far OOD 

In-distribution 

Multiple Sclerosis

In-distribution ↔ training distribution
(T1 MRI of Adult glioblastoma patients)

Are out-of-distribution:
• Images corrupted with artifacts.
• Shifts in the imaged population.
• Shifts in image modality.
• Diseases not present in the training set.
• Incorrect organs.
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Proposed solution: latent-space detection

Input image (H x W x D) Output prediction (H x W x D)

Segmentation network

Feature maps
(N x H1 x W1 x D1) 

Low-dimensional
representation

(N)

Spatial averaging
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Outlier detection using the Mahalanobis distance in latent space

Mathematical formulation
Fit a multivariate Gaussian distribution from
a training dataset of in-distribution latent
representations {xi}Ni=1:

µ =
1
N
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Σ =
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Challenges: segmentation architecture and layer selection

U-Net (Ronneberger et al.
2015)

V-Net (Milletari et al. 2016) Residual U-Net (Kerfoot et al.
2018)

U-Net ++ (Zhou et al. 2018) U-Net Transformer
(Hatamizadeh et al. 2022)

Architectures are diverse and may impact latent representations.
The choice of a layer to extract latent representations seems crucial for outlier detection,
but previous work focuses on single-layer approaches (Karimi et al. 2022, González et al.
2022, Diao et al. 2022)
We adopt a multi-layer approach to circumvent these challenges.

40 / 53



Rationale St. 1: Lesion-level Uncertainty St. 2: Predictive Intervals on Volumes St. 3: Quality Control Perspectives & Conclusion

Challenges: segmentation architecture and layer selection

U-Net (Ronneberger et al.
2015) V-Net (Milletari et al. 2016)

Residual U-Net (Kerfoot et al.
2018)

U-Net ++ (Zhou et al. 2018) U-Net Transformer
(Hatamizadeh et al. 2022)

Architectures are diverse and may impact latent representations.
The choice of a layer to extract latent representations seems crucial for outlier detection,
but previous work focuses on single-layer approaches (Karimi et al. 2022, González et al.
2022, Diao et al. 2022)

We adopt a multi-layer approach to circumvent these challenges.

40 / 53



Rationale St. 1: Lesion-level Uncertainty St. 2: Predictive Intervals on Volumes St. 3: Quality Control Perspectives & Conclusion

Challenges: segmentation architecture and layer selection

U-Net (Ronneberger et al.
2015) V-Net (Milletari et al. 2016) Residual U-Net (Kerfoot et al.

2018)

U-Net ++ (Zhou et al. 2018) U-Net Transformer
(Hatamizadeh et al. 2022)

Architectures are diverse and may impact latent representations.
The choice of a layer to extract latent representations seems crucial for outlier detection,
but previous work focuses on single-layer approaches (Karimi et al. 2022, González et al.
2022, Diao et al. 2022)
We adopt a multi-layer approach to circumvent these challenges.

40 / 53



Rationale St. 1: Lesion-level Uncertainty St. 2: Predictive Intervals on Volumes St. 3: Quality Control Perspectives & Conclusion

Challenges: segmentation architecture and layer selection

U-Net (Ronneberger et al.
2015) V-Net (Milletari et al. 2016) Residual U-Net (Kerfoot et al.

2018)

U-Net ++ (Zhou et al. 2018)

U-Net Transformer
(Hatamizadeh et al. 2022)

Architectures are diverse and may impact latent representations.
The choice of a layer to extract latent representations seems crucial for outlier detection,
but previous work focuses on single-layer approaches (Karimi et al. 2022, González et al.
2022, Diao et al. 2022)
We adopt a multi-layer approach to circumvent these challenges.

40 / 53



Rationale St. 1: Lesion-level Uncertainty St. 2: Predictive Intervals on Volumes St. 3: Quality Control Perspectives & Conclusion

Challenges: segmentation architecture and layer selection

U-Net (Ronneberger et al.
2015) V-Net (Milletari et al. 2016) Residual U-Net (Kerfoot et al.

2018)

U-Net ++ (Zhou et al. 2018) U-Net Transformer
(Hatamizadeh et al. 2022)

Architectures are diverse and may impact latent representations.
The choice of a layer to extract latent representations seems crucial for outlier detection,
but previous work focuses on single-layer approaches (Karimi et al. 2022, González et al.
2022, Diao et al. 2022)
We adopt a multi-layer approach to circumvent these challenges.

40 / 53



Rationale St. 1: Lesion-level Uncertainty St. 2: Predictive Intervals on Volumes St. 3: Quality Control Perspectives & Conclusion

Challenges: segmentation architecture and layer selection

U-Net (Ronneberger et al.
2015) V-Net (Milletari et al. 2016) Residual U-Net (Kerfoot et al.

2018)

U-Net ++ (Zhou et al. 2018) U-Net Transformer
(Hatamizadeh et al. 2022)

Architectures are diverse and may impact latent representations.
The choice of a layer to extract latent representations seems crucial for outlier detection,
but previous work focuses on single-layer approaches (Karimi et al. 2022, González et al.
2022, Diao et al. 2022)
We adopt a multi-layer approach to circumvent these challenges.

40 / 53



Rationale St. 1: Lesion-level Uncertainty St. 2: Predictive Intervals on Volumes St. 3: Quality Control Perspectives & Conclusion

Multi-layer aggregation of Mahalanobis distances

0.4

Segmentation network

Input image (H x W x D) Output prediction (H x W x D)

Standard single-layer approach.
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Multi-layer aggregation of Mahalanobis distances

Mean = 0.30

0.40.1 0.2 0.2 0.20.80.1 0.4 0.4 0.1 0.03 0.80.15

1 Mahalanobis Distance / layer

Segmentation network

Input image (H x W x D) Output prediction (H x W x D)

Max = 0.80

Proposed multi-layer approach.a

aB. Lambert et al. (2023a). “Multi-layer Aggregation as a key to feature-based OOD detection”. In: UNSURE 2023, Held in Conjunction with
MICCAI 2023. LNCS 14291, pp. 104–114 41 / 53
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Experiments - Whole tumor segmentation in brain T1-weighted MRI
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Whole tumor segmentation in
T1-weighted brain MRI as pretext task.
876 subjects for training, 30 for
validation, 227 for in-distribution testing
(BraTS 2023 dataset, Menze et al.
2014).
4 different segmentation models:
Dynamic U-Net, Residual U-Net, V-Net,
Attention U-Net.
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Results - Sensitivity to architecture and layer selection

Max
Mean

Layer #

Dynamic U-Net

Max
Mean

Layer #

Residual U-Net

Max
Mean

Layer #

V-Net

Max
Mean

Layer #

Attention U-Net

The optimal layer for OOD detection depends on the segmentation architecture.
The multi-layer scores (Mean and Max) provides high detection accuracy for each
architecture.
Overall it alleviates the cumbersome optimal layer selection.
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Success and failure cases - Dynamic U-Net

Incorrect organ (Lumbar, N=250)
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Success and failure cases - Dynamic U-Net

Strong bias artifact (N=227)
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Success and failure cases - Dynamic U-Net

Different tumor subtype (Meningioma, N=250)
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From input QC to output QC

Limits of input QC
Latent-space distances are efficient in detecting images far from the training
distribution.

What about detecting poor-quality predictions?
• Pearson’s correlation between segmentation quality (Dice) and the Mahalanobis distance:

ρ = 0.065 (N=3825)
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A proxy score for segmentation quality assessment (Hann et al. 2021)
Paradigm

Goal: estimate the true segmentation accuracy.
How? Measure the segmentation variability among an ensemble of models.
We note Sk the individual segmentations and MV the majority vote segmentation
Ensemble Prediction Agreement (EPA): EPA = 1

K

∑K
i=1 Dice(Sk ,MV )

Model 1 Model 2 Model 3 Model 4 Model 5

Deep Ensemble 

High agreement = high-quality segmentation

S1 S2 S3 S4 S5 Dice score
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Unified Input/Output Quality Control
The Mahalanobis distance is used as input QC score.
The Ensemble Prediction Agreement is used as output QC scorea.

aB. Lambert et al. (in prep.). “From Out-of-distribution detection to Quality Control”. In: Trustworthy AI in Medical Imaging, MICCAI book
series

Mahalanobis distance 
(Input QC)
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Prediction space stratification for multi-class brain tumor segmentation

Su
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e 

D
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e

Experimental Setting
5 Dynamic U-Nets are trained to
segment gliomas.
QC scores are computed for 874
test subjects with variable
difficulty.

4 regimes (A-B-C-D) identified
by fitting thresholds on a
validation dataset (N=30).
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Prediction space stratification for multi-class brain tumor segmentation
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Study summary - Quality Control

The Mahalanobis distance in the latent space is efficient in detecting images far from
the training distribution.

It can be completed with the Ensemble Prediction Agreement score to assess the
quality of the segmentation.

Conform

Warning
QC tool
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Thesis framework summary

Standard Deep Learning approach

Confident
Lesion

Doubful
Lesion

Deep Ensemble

Model 1 

Model K
Input MRI Automatic Segmentation

...

Lesion Load

Volume (ml)

5.0
[3.2, 6.5]

Voxel uncertainty map

Lesion uncertainty
scores

Predictive intervals for
volumetry

Input QC score Output QC score
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Limits and Future Directions

Evaluation of uncertainty
Generally restricted to detecting errors
"Ground truth" uncertainty labels are
promising but costly and subjective.

Annotations from the LIDC-IDRI dataset for lung
cancer (Armato III et al. 2011)

Added value in clinical routine
Measuring the benefit of uncertainty in
AI-assisted clinical routine:

Increased trust and acceptability?
Faster reviewing time?
Better decision-making?

Uncertain case

52 / 53



Rationale St. 1: Lesion-level Uncertainty St. 2: Predictive Intervals on Volumes St. 3: Quality Control Perspectives & Conclusion

Limits and Future Directions

Evaluation of uncertainty
Generally restricted to detecting errors
"Ground truth" uncertainty labels are
promising but costly and subjective.

Annotations from the LIDC-IDRI dataset for lung
cancer (Armato III et al. 2011)

Added value in clinical routine
Measuring the benefit of uncertainty in
AI-assisted clinical routine:

Increased trust and acceptability?
Faster reviewing time?
Better decision-making?

Uncertain case

52 / 53



AI-Powered Patient Care

Thank you !
Michel Dojat Senan Doyle Julien Perrin Benjamin Lemasson

Florence Forbes Alan Tucholka Team Pixyl Team NIPC



Rationale St. 1: Lesion-level Uncertainty St. 2: Predictive Intervals on Volumes St. 3: Quality Control Perspectives & Conclusion

Methodological contributions

Voxel-level
(Most existing 

literature)
 

Study 2:
Predictive Intervals for 

Volumetry

Study 3:
Subject-level

Lesion graph
Auxiliary graph 

classifier

MICCAI 2022 - 
IMMIC workshop

MICCAI 2023 - 
UNSURE workshop

MICCAI 2024 - 
Early Accepted

MICCAI 2023 - 
UNSURE 
workshop

TriadNet

Input-Output QC

Multi-layer aggregation

Study 1:
Lesion-level

AIM 2024 - 
Literature Review

Trustworthy AI in Medical 
Imaging

MICCAI book Series 2024 

Software 
Integration

Clinical 
Routine

53 / 53



References Appendix

References I

Angelopoulos, A. N., S. Bates, A. Fisch, L. Lei, and T. Schuster (2022). “Conformal risk control”. In: arXiv preprint
arXiv:2208.02814.

Angelopoulos, A. N. and S. Bates (2023). “Conformal Prediction: A Gentle Introduction”. In: Foundations and Trends in
Machine Learning 16.4, pp. 494–591.

Armato III, S. G., G. McLennan, L. Bidaut, M. F. McNitt-Gray, C. R. Meyer, A. P. Reeves, B. Zhao, D. R. Aberle,
C. I. Henschke, E. A. Hoffman, et al. (2011). “The lung image database consortium (LIDC) and image database
resource initiative (IDRI): a completed reference database of lung nodules on CT scans”. In: Medical physics 38.2,
pp. 915–931.

Barber, R. F., E. J. Candes, A. Ramdas, and R. J. Tibshirani (2023). “Conformal prediction beyond exchangeability”. In:
The Annals of Statistics 51.2, pp. 816–845.

Commowick, O., M. Kain, R. Casey, R. Ameli, J.-C. Ferré, A. Kerbrat, T. Tourdias, F. Cervenansky, S. Camarasu-Pop,
T. Glatard, et al. (2021). “Multiple sclerosis lesions segmentation from multiple experts: The MICCAI 2016 challenge
dataset”. In: Neuroimage 244, p. 118589.

Diao, Z., H. Jiang, and T. Shi (2022). “A unified uncertainty network for tumor segmentation using uncertainty cross
entropy loss and prototype similarity”. In: Knowledge-Based Systems 246, p. 108739.

González, C., K. Gotkowski, M. Fuchs, A. Bucher, A. Dadras, R. Fischbach, I. J. Kaltenborn, and A. Mukhopadhyay
(2022). “Distance-based detection of out-of-distribution silent failures for Covid-19 lung lesion segmentation”. In:
Medical Image Analysis 82, p. 102596.

Grech, N., T. Dalli, S. Mizzi, L. Meilak, N. Calleja, and A. Zrinzo (2020). “Rising incidence of glioblastoma multiforme in
a well-defined population”. In: Cureus 12.5.

1 / 22



References Appendix

References II

Hann, E., R. A. Gonzales, I. A. Popescu, Q. Zhang, V. M. Ferreira, and S. K. Piechnik (2021). “Ensemble of deep
convolutional neural networks with monte carlo dropout sampling for automated image segmentation quality control
and robust deep learning using small datasets”. In: Annual Conference on Medical Image Understanding and Analysis,
pp. 280–293.

Hatamizadeh, A., Y. Tang, V. Nath, D. Yang, A. Myronenko, B. Landman, H. R. Roth, and D. Xu (2022). “Unetr:
Transformers for 3d medical image segmentation”. In: Proceedings of the IEEE/CVF winter conference on
applications of computer vision, pp. 574–584.

Kamraoui, R. A., B. Mansencal, J. V. Manjon, and P. Coupé (2022). “Longitudinal detection of new MS lesions using
deep learning”. In: Frontiers in Neuroimaging 1, p. 948235.

Karimi, D. and A. Gholipour (2022). “Improving calibration and out-of-distribution detection in deep models for medical
image segmentation”. In: IEEE Transactions on Artificial Intelligence.

Kerfoot, E., J. Clough, I. Oksuz, J. Lee, A. P. King, and J. A. Schnabel (2018). “Left-ventricle quantification using residual
U-Net”. In: International Workshop on Statistical Atlases and Computational Models of the Heart, pp. 371–380.

Lambert, B., F. Forbes, S. Doyle, H. Dehaene, and M. Dojat (2024). “Trustworthy clinical AI solutions: A unified review
of uncertainty quantification in Deep Learning models for medical image analysis”. In: Artificial Intelligence in
Medicine, p. 102830.

Lambert, B., F. Forbes, S. Doyle, and M. Dojat (2023a). “Multi-layer Aggregation as a key to feature-based OOD
detection”. In: UNSURE 2023, Held in Conjunction with MICCAI 2023. LNCS 14291, pp. 104–114.

— (2023b). “TriadNet: Sampling-Free Predictive Intervals for Lesional Volume in 3D Brain MR Images”. In: UNSURE
2023, Held in Conjunction with MICCAI 2023. LNCS 14291, pp. 32–41.

2 / 22



References Appendix

References III

Lambert, B., F. Forbes, S. Doyle, and M. Dojat (in prep.). “From Out-of-distribution detection to Quality Control”. In:
Trustworthy AI in Medical Imaging, MICCAI book series.

Menze, B. H., A. Jakab, S. Bauer, J. Kalpathy-Cramer, K. Farahani, J. Kirby, Y. Burren, N. Porz, J. Slotboom, R. Wiest,
et al. (2014). “The multimodal brain tumor image segmentation benchmark (BRATS)”. In: IEEE Transactions on
Medical Imaging 34.10, pp. 1993–2024.

Milletari, F., N. Navab, and S.-A. Ahmadi (2016). “V-net: Fully convolutional neural networks for volumetric medical
image segmentation”. In: 2016 fourth international conference on 3D vision, pp. 565–571.

Ronneberger, O., P. Fischer, and T. Brox (2015). “U-net: Convolutional networks for biomedical image segmentation”. In:
International Conference on Medical image computing and computer-assisted intervention, pp. 234–241.

Salehi, S. S. M., D. Erdogmus, and A. Gholipour (2017). “Tversky loss function for image segmentation using 3D fully
convolutional deep networks”. In: International Workshop on Machine Learning in Medical Imaging, pp. 379–387.

Vovk, V. (2012). “Conditional validity of inductive conformal predictors”. In: Asian conference on machine learning,
pp. 475–490.

Wang, X. and M. Zhang (2022). “How Powerful are Spectral Graph Neural Networks”. In: International Conference on
Machine Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA. Proceedings of Machine Learning
Research 162, pp. 23341–23362.

Zhou, Z., M. M. Rahman Siddiquee, N. Tajbakhsh, and J. Liang (2018). “Unet++: A nested u-net architecture for
medical image segmentation”. In: pp. 3–11.

3 / 22



References Appendix

Feature importance - GIN model
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Domain-shift in medical-image analysis
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Dynamic U-Net model (16.5 million trainable parameters
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CNN-based lesion uncertainty quantification
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Analogy between CNN and GNN
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Lesion uncertainty - Application to lung nodule detection

Axial Sagittal Coronal

Lung CT scan presenting a lung nodule.

Dataset
LIDC-IDRI dataset (Armato III et al. 2011)
with 710 subjects for training, 50 for
validation, 250 for testing.
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Lung nodules - Correlation with human uncertainty

Nodule-level uncertainty ground truth scores
For each lung nodule, we have access to:

the number of experts that marked the finding as a nodule (inter-rater variability)
the subjective difficulty of detection (subtlety score).
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An adversarial approach to longitudinal Multiple Sclerosis case synthesis

Cross-sectional FLAIR MRI
Current visit = Timestep T 

Generated FLAIR MRI
Prior visit = Timestep T-1

Erase lesions

AI

Simulated 
progression
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An adversarial approach to longitudinal Multiple Sclerosis case synthesis

Inspiration: lesion inpainting (Kamraoui et al. 2022)
Train an autoencoder model to erase lesions inside cross-sectional images.
This yields a longitudinal case (2 visits) and a ground truth mask of new lesions.

E1 D1

Mask InpaintedInput

Prediction

Counterfactual maps

Generator
Discriminator

Input

E2 D2

Proposed extension: improved realism using Generative Adversarial Networks 12 / 22
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Synthetic longitudinal cases
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Human or Machine: Who is right?

TP probability = 0.988
(Axial)

TP probability = 0.981
(Axial)

TP probability = 0.980
(Sagittal)

TP probability = 0.970
(Axial)

TP probability = 0.961
(Sagittal)

TP probability = 0.939
(Sagittal)

False positive lesions associated with low uncertainty scores.
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The lesion division algorithm

Binary segmentation ⇒ lesion instances by identifying peaks in the probability map.

(c)

(d) (e)
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Conformal Prediction: the size of the calibration dataset

Analytic distribution of coverages (Vovk 2012)

P(Ytest ∈ Γα(Xtest)|{(Xi ,Yi )
N
i=1}) ∼ Beta(N + 1 − k, k)

with k = ⌊(N + 1)× α⌋
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Non-exchangeable Conformal Prediction
Main assumption of Conformal Prediction

Calibration and test data should be exchangeable.
In other words, there should be no domain-shift.
Unrealistic for real-world medical applications.

Solution: reweight datapoints to make them exchangeable (Barber et al. 2023)
Writing (X1, ...,Xn) the n calibration sample, 1 − α the desired coverage, s the score function:

Estimate the density ratio: w = dPtest/dPtrain

Reweight calibration samples: pwi (x) =
w(Xi )∑N

i=1 w(Xj )+w(x)
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Practical estimation of the density ratio for high-dimensional medical images
Issues with Weighted Conformal Prediction

The calibration and test distributions should not be too far apart, otherwise the density
ratio is undefined.
Estimating the density ratio is intractable in very high dimensions (3D MRIs).

Input image (H x W x D)

Multi-head segmentation network
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Classification-based density ratio estimation (Angelopoulos et al. 2022)

Definition
Writing X1, ...,Xn the calibration points and Xn+1, ...,Xn+m the test points.
We set Ci = 0 for i = 1, ..., n and Ci = 1 for i = n + 1, ..., n +m.
Writing p̂(x) = P(C = 1|X = x) the probability predicted by a classifier trained on the
{Xi ,Ci} dataset that the input sample x belongs to the test distribution.
The density ratio is estimated as:

ŵ(x) =
p̂(x)

1 − p̂(x)
(6)
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Reconstruction-based OOD detection
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Pledge of integrity

In the presence of my peers.

With the completion of my doctorate, in my quest for knowledge, I have carried out demanding
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